Scientific MOOCs follower. Author of Airpocalypse, a techno-medical thriller (Spring 2017)

Welcome to the digital era of biology (and to this modest blog I started in early 2005).

To cure many diseases, like cancer or cystic fibrosis, we will need to target genes (mutations, for ex.), not organs! I am convinced that the future of replacement medicine (organ transplant) is genomics (the science of the human genome). In 10 years we will be replacing (modifying) genes; not organs!

Anticipating the $100 genome era and the P4™ medicine revolution. P4 Medicine (Predictive, Personalized, Preventive, & Participatory): Catalyzing a Revolution from Reactive to Proactive Medicine.

I am an early adopter of scientific MOOCs. I've earned myself four MIT digital diplomas: 7.00x, 7.28x1, 7.28.x2 and 7QBWx. Instructor of 7.00x: Eric Lander PhD.

Upcoming books: Airpocalypse, a medical thriller (action taking place in Beijing) 2017; Jesus CRISPR Superstar, a sci-fi -- French title: La Passion du CRISPR (2018).

I love Genomics. Would you rather donate your data, or... your vital organs? Imagine all the people sharing their data...

Audio files on this blog are Windows files ; if you have a Mac, you might want to use VLC ( to read them.

Concernant les fichiers son ou audio (audio files) sur ce blog : ce sont des fichiers Windows ; pour les lire sur Mac, il faut les ouvrir avec VLC (

"Suspended Animation Goes Primetime: Say Goodbye To Death As We Know It"
"But advances in neuroscience, ideas about brain death,rain death, and the introduction of mechanical ventilators—with their ability to keep the heart pumping long after the brain had died—forced a society-wide reevaluation of  terms."(source)

"At issue were irreversible comas and the tricky legalities of organ harvesting (i.e. when is someone dead enough that we can borrow their kidneys to give to someone more alive and in need, but not too dead that those kidneys stop working). And it was just this issue that brought together an ad hoc committee at Harvard Medical School in 1968. In an effort to come up with a hard and practical definition of 'irreversible coma,' the committee also established 'brain death' as the best proof of life’s end.
The Harvard criteria spread from there, effectively becoming the accepted definition the world over. But once again, not so fast.
Back in 2002, researchers at the University of Michigan Hospital in Ann Arbor announced that they had—using pigs—found a way to remove all of the animal’s blood and replace it with cold saline solution, which induces rapid hypothermia and halts almost all cellular activity—essentially placing the pig into suspended animation.
Once again, our technology messed with our terminology. 'After we did those experiments,' Peter Rhee, one of the main researchers involved, recently told New Scientist, 'the definition of dead changed. Every day at work I declare people dead. They have no signs of life, no heartbeat, no brain activity. I sign a piece of paper knowing in my heart that they are not actually dead. I could, right then and there, suspend them. But I have to put them in a body bag. It’s frustrating to know there is a solution.'
And that solution is finally being tested out in humans. As of March 29, 2014, a team of surgeons trained in this saline-cooling procedure is on emergency call at the UPMC Presbyterian Hospital in Pittsburgh, Pennsylvania. In this field trial of the technique, patients who arrive at the hospital after having suffered cardiac arrest after traumatic injury (i.e. gunshots) and do not respond to attempts to restart their heart will be cooled with saline  to about 10 degrees Celsius (50 Fahrenheit). Their cellular activity will stop. They will be 'clinically dead.' But—if doctors can repair the trauma in roughly two hours—they are still capable of being revived.
In itself, this is amazing. This is two hours of suspended animation—which  has been the stuff of sci-fi for almost a century. Today it’s scientific fact.
But where things get really interesting is what happens tomorrow. As the technology progresses, it is not too much of a stretch to say those two hours of suspended animation will give way to four hours and eight hours and sooner or later whole days and weeks and months—in other words, we’ll have mastered artificial hibernation.
And there are plenty of good reasons to master this technique, with deep space exploration being at the top of most people’s lists. But what happens, say, when a spaceship on its way to the planet formerly known as Pluto, complete with a crew in hibernation, gets dinged by an asteroid and knocked off course and is thus lost before they land and can be reanimated. The crew spends years and years and years in artificial hibernation. So are they alive or are they dead?
Put differently, if we know this crew can be later revived, but centuries might pass before we can actually catch the ship and revive the crew, is it ethical for us to shoot up a death ray laser beam from Earth to destroy ship and put the crew out of their suspended misery?
Since that 1768 Encyclopedia Britannica definition, the entry for death has been rewritten over 30 times. You would assume that today, in a society that can measure effects down to the quantum level, that death’s definition would be fixed. But with suspended animation suddenly heading into human trails, when it comes to defining death, we’re still nowhere close to a straight answer."


Aucun commentaire: